

Contact while berthing

It was early morning and a 150 m LOA and 14,900 DWT general cargo vessel, vessel A, was sailing up a South American river with a pilot on board. The Master and pilot had carried out a pilot briefing where the pilot presented the plan for berthing. The vessel would be berthed portside alongside, between two vessels which were already berthed. The Master asked the pilot if any tugboats would be necessary, but the pilot did not believe so as there would be a 200 m gap between the berthed vessels, giving vessel A about 50 m clearance from the berthed vessels.

During the berthing the Chief Officer was by the radar and ECDIS on the bridge, monitoring the progress. The vessel had a speed of about 2 knots over the ground in the river and was on a NNW course. There was a strong SSE current at around 2-3 knots and a NE wind at Beaufort scale 3. During the final berthing manoeuvre the vessel passed one of the berthed vessels with only 20 metres clearance on the portside. The wind set the vessel towards the berthed vessel. The Master had the conn and was positioned on the port wing. As he was manoeuvring the vessel, the pilot gave him advice and instructions. When the Master noticed that

his vessel was very close to the berthed vessel he ordered full power to starboard on the bow thruster.

Despite the Master's efforts to turn the bow to starboard the vessel continued turning to port and the bow collided with the berthed vessel. The vessel's superstructure was forward, so the bridge wing also caused damage to the berthed vessel.

The Master finally managed to gain control of the vessel and berth it. Upon berthing the vessel, the Master noted that the distance between the two other vessels was 10 metres forward and 20 metres aft.

What can we learn?

- When the Master approached the berth, he should have evaluated if the available tugs should be used or not. If he was unsure about the clearance, he should have asked the pilot for tug assistance before berthing.
- It is important that the Master and pilot discuss what is anticipated and how to carry this out in the safest way. When the vessel was sailing up the river there were strong currents and some wind. During the manoeuvre the Master had the conn but needed constant updates from the pilot and Chief Officer about how strong the current was. These discussions should also have taken place during the pilot briefing. Having an NNW course and NE winds on the starboard bow will push the bow to port, especially when the vessel is lining up for the final approach and altering slowly to port and slowing down. The current will also make the approach more difficult as more power must be used during the final manoeuvre as the current would push the bow to starboard.
- The entire bridge team should be involved in berthing. In this instance the Chief Officer was by the radar and ECDIS and was the person who could have informed the Master about changing current or wind. The current also took the pilot by surprise. An efficient bridge team are assigned roles where they all know what they are expected to do and what the other persons are supposed to do. If someone makes a mistake this should be identified by a member of the bridge team. The Chief Officer was on the bridge and he should have supported the Master with information. This is further explained in our Bridge Instruction booklet (see appendix (i)).